TOSYLMETHYL ISOCYANIDE EMPLOYED IN A NOVEL SYNTHESIS OF KETONES. A NEW MASKED FORMALDEHYDE $\mbox{Reagent}^1$

Okko Possel and Albert M. van Leusen^{*} Department of Organic Chemistry, The University Nijenborgh, Groningen, The Netherlands

(Received in UK 23 September 1977; accepted for publication 6 October 1977)

We wish to announce the use of tosylmethyl isocyanide (TosMIC, <u>1</u>) as a novel tool in the synthesis of carbonyl compounds. In this letter we report a simple method for the synthesis of symmetrical and unsymmetrical ketones starting with commercially available TosMIC; the succeeding letter² deals with a synthesis of α -diketones based on the same principles.

TosMIC (<u>1</u>) is basically a masked molecule of formaldehyde (from which TosMIC actually is prepared)³. The two electronegative functionalities facilitate the formation of TosMIC-anion⁴, and in essence effect an <u>umpolung</u>⁵ of carbonyl reactivity. Thus TosMIC can be alkylated efficiently, both to mono- or dialkyl derivatives.⁶ Subsequently, the carbonyl is unveiled by a combination of steps as indicated in eq 1. Clearly, the overall result amounts to alkylation of formaldehyde with an electrophilic reagent.⁷

RX	Ketone (<u>6</u>)	% Yield a
PhCH ₂ Br	(PhCH ₂) ₂ C=0 (<u>6a</u>)	72
4-c1c ₆ H ₄ CH ₂ C1	(4-C1C ₆ H ₄ CH ₂) ₂ C=0 (<u>6b</u>)	56
i-PrI	i-Pr ₂ C=0 (<u>6c</u>)	47
<u>n-BuI</u>	<u>n</u> -Bu ₂ C=0 (<u>6d</u>)	69
Br(CH ₂) ₆ Br	$\bigcirc = 0 (\underline{6e})$	51
с1(СH ₂)2 ^{0(СН} 2)2 ^{С1}	$0 = 0 (\underline{6f})$	16

TABLE I. Symmetrical Ketones (6) Prepared through $1 \xrightarrow{2 \text{ RX}} 3$ (R¹ = R² = R) $\rightarrow 6$

 $\frac{a}{2}$ Overall yield of distilled product, calculated on TosMIC (1).

R ¹	r ² x	Ketone (<u>6</u>)	% Yield <u>a</u>
PhCH2	MeI	O PhCH ₂ CMe (<u>6g</u>)	58
PhCH2	i-PrI	PhCH ₂ CPr-i (<u>6h</u>)	65
PhCH2	MeEtCHI <u>b</u>	PhCH ₂ CCHMeEt (<u>6i</u>)	41
Me	CH3(CH2)7I	MeC(CH ₂) ₇ CH ₃ (<u>6j</u>)	80
Ме	сн ₃ (сн ₂) ₁₅ 1	₩eC(CH ₂) ₁₅ CH ₃ (<u>6k</u>)	63

TABLE II. Unsymmetrical Ketones (<u>6</u>) Prepared through $\left(\underline{1} \xrightarrow{R^{1}X}\right) \underline{2} \xrightarrow{R^{2}X} \underline{3} \neq \underline{6}$

 $\frac{a}{D}$ overall yield of distilled product calculated on TosMIC for <u>6g</u>, and on TosCHR¹N=C for <u>6h-k</u>. $\frac{b}{D}$ No alkylation was observed with 2-bromobutane instead of 2-iodobutane.

No. 48

As a typical example of the synthesis of symmetrical ketones (Table I) the dialkylation of TosMIC was carried out with 2 equiv of $PhCH_2Br$ (using NaH in $Me_2SO - Et_2O$, $20^{\circ}C$, 1 h) to give <u>3a</u> ($R^1 = R^2 = PhCH_2$).^{6b} To effect the conversion to <u>6a</u>, a suspension of crude <u>3a</u> (ca. 10 mmol) in a mixture of Et_2O (15 ml) and CH_2CI_2 (5 ml) was rapidly stirred for 5 min at $20^{\circ}C$ with 38% aqueous HCl (1 ml), followed by treatment with NaOH to remove <u>p</u>-toluenesulfinic acid. The yield of dibenzyl keton (6a) was 72% overall.

As an example of unsymmetrical ketones (Table II), benzyl methyl ketone (<u>6g</u>) was prepared by a one-pot phase-transfer alkylation of TosMIC ($CH_2Cl_2/40\%$ aqueous NaOH; 5½ <u>n</u>-Bu₄NI; 25^oC), first with 1 equiv of PhCH₂Br, after 30 min followed by 1.1 eq of MeI to give <u>3g</u> [71% overall yield, mp 133.5-134.0^oC; $\gamma_{N=C}$ 2130 cm⁻¹; δ 3.26 (s, CH₂), 1.52 ppm (s, α -CH₃)]. Conversion of <u>3g</u>, analoguously to the symmetrical ketones, gave <u>6g</u> in 58% yield calculated on TosMIC. The other ketones of Table II were prepared from isolated phase-transfer reaction products

2 (R^1 = PhCH₂ or Me)^{6a} by introducing R^2 with NaH in Me₂SO-Et₂O as described above.

We assume that the reaction of $\underline{3}$ to $\underline{6}$ is initiated by acid catalyzed hydration⁸ to $\underline{4}$, followed by a rapid elimination of <u>p</u>-toluenesulfinic acid and hydrolysis (eq 1). Attempts to interrupt the reaction at the stage of formamide $\underline{4a}$ (R¹ = R² = PhCH₂) were unsuccessful, but the proposed mechanism gains support by the hydration of TosCHRN=C (R = H, Me, PhCH₂) to the corresponding formamides⁹ and the observations discussed in the succeeding letter.²

References and Notes

- Chemistry of Sulfonylmethyl Isocyanides 16; for part 15 see 0. Possel and A.M. van Leusen, Heterocycles, in print (1977).
- 2. D. van Leusen and A.M. van Leusen, Tetrahedron Lett., succeeding letter.
- 3. B.E. Hoogenboom, O.H. Oldenziel, and A.M. van Leusen, Org. Synth., 57, 84 (1978); ref. 4a.
- TosMIC-anion has been exploited thus far mainly in the synthesis of azoles and azolines, and in the conversion of ketones to nitriles or α-hydroxy aldehydes; for leading references see:

 (a) A.M. van Leusen, J. Wildeman and O.H. Oldenziel, J. Org. Chem., <u>42</u>, 1153 (1977);
 (b) O.H. Oldenziel, D. van Leusen, and A.M. van Leusen, J. Org. Chem., <u>42</u>, 0ctober issue (1977).
- Reviews: D. Seebach and M. Kolb, Chem. Ind. (London), <u>1974</u>, 687; O.W. Lever, Tetrahedron <u>32</u>, 1943 (1976); B.-T. Gröbel and D. Seebach, Synthesis, 1977, 357.

- 6. (a) A.M. van Leusen, R.J. Bouma, and O. Possel, Tetrahedron Lett., <u>1975</u>, 3487; (b)
 A.M. van Leusen, G.J.M. Boerma, R.B. Helholdt, H. Siderius, and J. Strating, ibid., <u>1972</u>, 2367.
- 7. A reaction sequence similar to $\underline{3} \rightarrow \underline{+6}$ when applied to $\underline{2}$ (R¹ = PhCH₂) was shown to provide phenylacetaldehyde in 50% overall yield, 0. Possel.
- See: T. Saegusa and Y. Ito in "Isonitrile Chemistry", I. Ugi, Ed., Academic Press, New York, N.Y., 1971, p. 65.
- 9. 0. Possel, unpublished.